Robótica para desarrollar el pensamiento computacional en Educación Infantil

  1. Ana García-Valcárcel Muñoz-Repiso 1
  2. Yen-Air Caballero-González 2
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

  2. 2 Universidad Tecnológica de Panamá
    info

    Universidad Tecnológica de Panamá

    Panamá, Panamá

    ROR https://ror.org/030ve2c48

Revista:
Comunicar: Revista Científica de Comunicación y Educación

ISSN: 1134-3478

Año de publicación: 2019

Título del ejemplar: Medios móviles emergentes. Convergencia comunicativa en el nuevo escenario mediático

Número: 59

Páginas: 63-72

Tipo: Artículo

DOI: 10.3916/C59-2019-06 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Comunicar: Revista Científica de Comunicación y Educación

Objetivos de desarrollo sostenible

Resumen

The development of programming skills is currently promoting from an early school age, trying to get children to take an active and creative role in the use of technologies. The objective of this article is to verify the repercussion of educational robotics activities on kindergarten students in the acquisition of computational thinking and programming skills. The research design is quasi-experimental, with pre-test and post-test measures, using experimental and control groups. The sample consists of 131 students from the second cycle of early education (between 3 and 6 years old), all from the same Spanish school. Computational thinking is measured through three dimensions: sequences (algorithms), action-instruction correspondence and debugging. The intervention sessions, as well as the structure of the challenges that were used in the pre- and post-test evaluations, were designed based on the reference program of robotics studies called “TangibleK”. The intervention, carried out doing learning activities using educational robotics resources, presents positive results in relation to the computational thinking skills achieved. The differences between the pre-test and the post-test in the experimental and control groups are statistically significant, in that children engaged in robotics program achieves a greater advance in the three dimensions of computational competence through this method.

Información de financiación

Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) e Instituto para la Formación y Aprovechamiento de los Recursos Humanos (IFARHU) de la República de Panamá.

Referencias bibliográficas

  • Alsina, A., & Acosta, Y. (2018). Iniciación al álgebra en Educación Infantil a través del pensamiento computacional: Una experiencia sobre patrones con robots educativos programables. Revista Iberoamericana de Educación Matemática, 52, 218-235. https://bit.ly/2PC1hLt
  • Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A digital age skill for everyone. Learning and Leading with Technology, 38(6), 20-23.
  • Berrocoso, J., Sánchez, M., & Arroyo, M. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1-18. https://doi.org/10.6018/red/46/3
  • Bers, M.U. (2010). The TangibleK Robotics program: Applied computational thinking for young children. Early Childhood Research & Practice, 12(2). https://bit.ly/2RZ3B11
  • Bers, M.U., Flannery, L., Kazakoff, E.R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
  • Bravo, F.A., & Forero, A. (2012). La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales. Teoría de la Educación. 13(2), 120-136. https://bit.ly/2EtOVnJ
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA) (pp. 1-25), Vancouver, Canada.
  • Bruni, F., & Nisdeo, M. (2017). Educational robots and children’s imagery: A preliminary investigation in the first year of primary school. Research on Education and Media, 9(1), 37-44. https://doi.org/10.1515/rem-2017-0007
  • Buitrago, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a generation’s way of thinking: Teaching computational thinking through programming. Review of Educational Research, 87(4), 834-860. https://doi.org/10.3102/0034654317710096
  • Buss, A., & Gamboa, R. (2017). Teacher transformations in developing computational thinking: Gaming and robotics use in after-school settings. In P.J. Rich & C.B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (pp. 189-203). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-52691-1_12
  • Caballero, Y.A., & García-Valcárcel, A. (2017). Development of computational thinking skills and collaborative learning in initial education students through educational activities supported by ICT resources and programmable educational robots. In F.J. García-Peñalvo (Ed.), Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality (p. 103). New York: ACM. https://doi.org/10.1145/3144826.3145450
  • Campbell, D., & Stanley, J. (1993). Disen?os experimentales y cuasiexperimentales en la investigacio?n social. Buenos Aires: Amorrortu.
  • Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M.M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers and Education, 109, 162-175. https://doi.org/10.1016/j.compedu.2017.03.001
  • Durak, H.Y., & Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and various variables with the structural equation model. Computers & Education, 116, 191-202. https://doi.org/10.1016/j.compedu.2017.09.004
  • Elkin, M., Sullivan, A., & Bers, M.U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153-169. https://doi.org/10.28945/2094
  • García-Peñalvo, F.J., Rees, A.M., Hughes, J., Jormanainen, I., Toivonen, T., & Vermeersch, J. (2016). A survey of resources for introducing coding into schools. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16) (pp.19-26). Salamanca, Spain, November 2-4, 2016. New York: ACM. https://doi.org/10.1145/3012430.3012491
  • García-Valcárcel, A., & Tejedor, F.J. (2017). Percepción de los estudiantes sobre el valor de las TIC en sus estrategias de aprendizaje y su relación con el rendimiento. Educación XX1, 20(2), 137-159. https://doi.org/10.5944/educxx1.19035
  • Goodgame, C. (2018). Beebots and Tiny Tots. In E. Langran, & J. Borup (Eds.). Society for Information Technology & Teacher Education International Conference (pp. 1179-1183). Association for the Advancement of Computing in Education (AACE).
  • Hernández-Sampieri, R., Fernández-Collado. C., & Baptista-Lucio. P. (2014). Metodología de la investigación. México: McGraw-Hill Education.
  • Kandlhofer, M., & Steinbauer, G. (2016). Evaluating the impact of educational robotics on pupils’ technical-and social-skills and science related attitudes. Robotics and Autonomous Systems, 75, 679685. https://doi.org/10.1016/j.robot.2015.09.007
  • Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13-24. https://doi.org/10.4018/ijseus.2018010102
  • Koning, J.I., Faber, H.H., & Wierdsma, M.D. (2017). Introducing computational thinking to 5 and 6 years old students in dutch primary schools: An educational design research study. In C. Suero, & M. Joy (Eds.), Proceedings of the 17th Koli Calling Conference on Computing Education Research Calling Conference on Computing Education Research (pp. 189-190). New York: ACM. https://doi.org/10.1145/3141880.3141908
  • Kucuk, S., & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Computers & Education, 111, 31-43. https://doi.org/10.1016/j.compedu.2017.04.002
  • Lee, K.T., Sullivan, A., & Bers, M.U. (2013). Collaboration by design: Using robotics to foster social interaction in kindergarten. Computers in the Schools, 30(3), 271-281. https://doi.org/10.1080/07380569.2013.805676
  • Liu, H.P., Perera, S.M., & Klein, J.W. (2017). Using model-based learning to promote computational thinking education. In P.J. Rich, & C.B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (pp. 153-172). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-52691-1_10
  • Moro, M., Agatolio, F., & Menegatti, E. (2018). The RoboESL Project: Development, evaluation and outcomes regarding the proposed robotic enhanced curricula. International Journal of Smart Education and Urban Society, 9(1), 48-60. https://doi.org/10.4018/ijseus.2018010105
  • Ozcinar, H., Wong, G., & Ozturk, H.T. (Eds.) (2017). Teaching computational thinking in primary education. USA: IGI Global. https://doi.org/10.4018/978-1-5225-3200-2
  • Pittí, K., Curto-Diego, B., Moreno-Rodilla, V. (2010). Experiencias construccionistas con robótica educativa en el Centro Internacional de Tecnologías Avanzadas. Education in the Knowledge Society, 11(1), 310-329. https://bit.ly/2MNPwls
  • Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey & D.E. Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp.163-181). New York: Routledge.
  • Schwabe, R.H. (2013). Las tecnologías educativas bajo un paradigma construccionista: un modelo de aprendizaje en el contexto de los nativos digitales. Revista Iberoamericana de Estudos em Educação, 8(3), 738-746. https://doi.org/10.5860/choice.51-1612
  • Seppänen, L., Schaupp, M., & Wahlström, M. (2018). Enhancing learning as theoretical thinking in robotic surgery. Nordic Journal of Vocational Education and Training, 7(2), 84-103. https://doi.org/10.3384/njvet.2242-458x.177284
  • Serholt, S. (2018). Breakdowns in children's interactions with a robotic tutor: A longitudinal study. Computers in Human Behavior, 81, 250-264. https://doi.org/10.1016/j.chb.2017.12.030
  • Tejedor, F.J. (2000). El diseño y los diseños en la evaluación de programas. Revista de Investigación Educativa, 18(2), 319-339.
  • Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  • Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118
  • Wong, G., Jiang, S., & Kong, R. (2018). Computational thinking and multifaceted skills: A qualitative study in primary schools. in teaching computational thinking in primary education (pp. 78-101). USA: IGI Global. https://doi.org/10.4018/978-1-5225-3200-2.ch005
  • Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. RED, 46, 1-47. https://doi.org/10.6018/red/45/4