¿Aprender con robótica en Educación Primaria? Un medio de estimular el pensamiento computacional

  1. Caballero-González, Yen Air 1
  2. García-Valcárcel, Ana 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Journal:
Education in the knowledge society (EKS)

ISSN: 2444-8729 1138-9737

Year of publication: 2020

Issue: 21

Type: Article

DOI: 10.14201/EKS.22957 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Education in the knowledge society (EKS)

Abstract

Technology has transformed the social scenario by incorporating strategies, techniques and methods to obtain more significant educational processes. The main initiative promoted is the strengthening of skills and competencies in programming and computational thinking. This article evidences the effect of a training program on educational robotics on the acquisition of computational thinking and programming skills in young children. The research design is quasi-experimental, with pretest and post-test measures, with an experimental and control group. The sample of participants consists of 46 students of the first year of Primary Education, with age between 6 and 7 years, belonging to a Spanish educational centre. Computational thinking is measured through the dimensions: algorithmic thinking sequences, abstraction-patterns and debugging. The learning activities used in the intervention sessions were an adaptation of the training actions proposed in the robotics study program “TangibleK”. The results obtained in this study reveal positive effects concerning the performance achieved by the participants in the activities carried out. This indicates a significant effect on the strengthening of skills linked to computational thinking.  The differences found between the pretest and post-test measures of the experimental group are statistically significant and superior to those presented by the control group. In this way, it was concluded that the participants of the training program in robotics and programming obtain a more significant advance in the three dimensions of the computational competence explored.

Funding information

Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) e Instituto para la Formación y Aprovechamiento de los Recursos Humanos (IFARHU) de la República de Panamá. Agradecemos al personal directivo, profesores y estudiantes del primer nivel de Educación Primaria, Colegio Maestro Ávila, Salamanca (España).

Bibliographic References

  • Angel-Fernandez, J. M., & Vincze, M. (2018). Introducing storytelling to educational robotic activities. IEEE Global Engineering Education Conference, EDUCON, 2018–April, 608–615. doi:https://doi.org/10.1109/EDUCON.2018.8363286
  • Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A digital age skill for everyone. Learning and Leading with Technology, 38(6), 20-23.
  • Basogain-Olabe, X., Olabe-Basogain, M. Á., & Olabe-Basogain, J. C. (2015). Pensamiento Computacional a través de la Programación: Paradigma de Aprendizaje. Revista de Educación a Distancia (RED), 46(6), 1–33. doi:https://doi.org/10.6018/red/46/6
  • Berrocoso, J., Sánchez, M., & Arroyo, M. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1-18. doi:https://doi.org/10.6018/red/46/3
  • Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York, NY: Teachers College Press
  • Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood. High-tech tots: Childhood in a digital world, 49, 49-70.
  • Bers, M. U. (2012). Designing Digital Experiences for Positive Youth Development: From Playpen to Playground. Cary, NC: Oxford. doi:https://doi.org/10.1093/acprof:oso/9780199757022.001.0001
  • Bers, M. U. (2017). The Seymour test: Powerful ideas in early childhood education. International Journal of Child-Computer Interaction, 14, 10–14. doi:https://doi.org/10.1016/j.ijcci.2017.06.004
  • Bers, M. U. (2018). Coding, playgrounds and literacy in early childhood education: The development of KIBO robotics and ScratchJr. IEEE Global Engineering Education Conference, EDUCON- 2018, (pp. 2094–2102). doi:https://doi.org/10.1109/EDUCON.2018.8363498
  • Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157. doi:https://doi.org/10.1016/j.compedu.2013.10.020
  • Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early childhood teacher education. Journal of Technology and Teacher Education, 21(3), 355-377.
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA) (pp. 1-25), Vancouver, Canada.
  • Caballero-González, Y. A., & García-Valcárcel, A. (2017). Development of computational thinking skills and collaborative learning in initial education students through educational activities supported by ICT resources and programmable educational robots. In F.J. García-Peñalvo (Ed.), Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality (article 103). New York: ACM. doi:https://doi.org/10.1145/3144826.3145450
  • Caballero-González, Y. A., & García-Valcárcel, A. (2018). A robotics-based approach to foster programming skills and computational thinking: Pilot experience in the classroom of early childhood education. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 41-45). ACM. doi:https://doi.org/10.1145/3284179.3284188
  • Campbell, D., & Stanley, J. (1993). Diseños experimentales y cuasiexperimentales en la investigación social. Buenos Aires: Amorrortu.
  • Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: using robotics to motivate math,science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711–722.
  • Chalmers, C. (2018). International Journal of Child-Computer Interaction Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93–100. doi:https://doi.org/10.1016/j.ijcci.2018.06.005
  • Chang, C. W., Lee, J. H., Chao, P. Y., Wang, C. Y., & Chen, G. D. (2010). Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school. Educational Technology & Society, 13(2), 13–24.
  • Chiara, M., Lieto, D., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., … Dario, P. (2017). Computers in Human Behavior Educational Robotics intervention on Executive Functions in preschool children : A pilot study. Computers in Human Behavior, 71, 16–23. doi:https://doi.org/10.1016/j.chb.2017.01.018
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd. Ed. New York: Academic Press.
  • Conde, M. Á., Fernández-Llamas, C., Ribeiro Alves, J. F., Ramos, M. J., Celis Tena, S., Gonçalves, J., . . . García-Peñalvo, F. J. (2019). RoboSTEAM - A Challenge Based Learning Approach for integrating STEAM and develop Computational Thinking. In M. Á. Conde-González, F. J. Rodríguez-Sedano, C. Fernández-Llamas, & F. J. García-Peñalvo (Eds.), TEEM’19 Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (Leon, Spain, October 16th-18th, 2019) (pp. 24-30). New York, NY, USA: ACM. doi:https://doi.org/10.1145/3362789.3362893
  • Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., ... & Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in human behavior, 71, 16-23. doi:https://doi.org/10.1016/j.chb.2017.01.018
  • García-Peñalvo, F. J. (2016). A brief introduction to TACCLE 3 – Coding European Project. In F. J. García-Peñalvo & J. A. Mendes (Eds.), 2016 International Symposium on Computers in Education (SIIE 16). USA: IEEE. doi:https://doi.org/10.1109/SIIE.2016.7751876
  • García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407–411. doi:https://doi.org/10.1016/j.chb.2017.12.005
  • García-Peñalvo, F.J., Rees, A.M., Hughes, J., Jormanainen, I., Toivonen, T., & Vermeersch, J. (2016). A survey of resources for introducing coding into schools. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16) (pp.19-26). New York: ACM. doi:https://doi.org/10.1145/3012430.3012491
  • García-Valcárcel, A., & Caballero-González, Y. A. (2019). Robótica para desarrollar el pensamiento computacional en Educación Infantil. Comunicar: Revista científica iberoamericana de comunicación y educación, 27(59), 63-72. doi:https://doi.org/10.3916/C59-2019-06
  • Gonçalves, J., Lima, J., Brito, T., Brancalião, L., Camargo, C., Oliveira, V., & Conde, M. Á. (2019, October). Educational Robotics Summer Camp at IPB: A Challenge based learning case study. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 36-43). New York: ACM. doi:https://doi.org/10.1145/3362789.3362910
  • González-González, C. S. (2019). State of the art in the teaching of computational thinking and programming in childhood education. Education in the Knowledge Society, 20, 17. doi:https://doi.org/10.14201/eks2019_20_a17
  • Goodgame, C. (2018). Beebots and Tiny Tots. In E. Langran, & J. Borup (Eds.). Society for Information Technology & Teacher Education International Conference (pp. 1179-1183). Association for the Advancement of Computing in Education (AACE).
  • Hernández Sampieri, R., Fernández-Collado. C., & Baptista-Lucio. P. (2014). Metodología de la investigación. México: McGraw-Hill Education.
  • Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4), 905. doi:https://doi.org/10.3390/su10040905
  • Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in Human Behavior, 52, 200-210. doi:https://doi.org/10.1016/j.chb.2015.05.047
  • Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13-24. doi:https://doi.org/10.4018/IJSEUS.2018010102
  • Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The Effect of a Classroom-Based Intensive Robotics and Programming Workshop on Sequencing Ability in Early Childhood. Early Childhood Education Journal, 41, 245–255. doi:https://doi.org/10.1007/s10643-012-0554-5
  • Lee, K. T. H., Sullivan, A., & Bers, M. U. (2013). Collaboration by Design: Using Robotics to Foster Social Interaction in Kindergarten. Computers in the Schools, 30(3), 271–281. doi:https://doi.org/10.1080/07380569.2013.805676
  • Misirli, A., & Komis, V. (2014). Robotics and Programming Concepts in Early Childhood Education: A Conceptual Framework for Designing Educational Scenarios. Research on E-Learning and ICT in Education, (pp. 99-118). New York, NY: Springer. doi:https://doi.org/10.1007/978-1-4614-6501-0_8
  • Moreno, I., Muñoz, L., Serracín, J. R., Quintero, J., Pittí Patiño, K., & Quiel, J. (2012). La robótica educativa, una herramienta para la enseñanza-aprendizaje de las ciencias y las tecnologías. Education in the Knowledge Society. 13(2), 74-90
  • Öztürk, H. T., & Calingasan, L. (2018). Robotics in early childhood education: A case study for the best practices. In H. Ozcinar, G. Wong, & H. Ozturk (Eds.). Teaching computational thinking in primary education (pp. 182–200). Hershey, PA: IGI Global. doi:https://doi.org/10.4018/978-1-5225-3200-2.ch010
  • Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental programming concepts and computational thinking with ScratchJr in preschool education: a case study. International Journal of Mobile Learning and Organisation, 10(3), 187. doi:https://doi.org/10.1504/ijmlo.2016.077867
  • Papert, S. (1980). Mindstorms. Children, computers and powerful ideas. New York: Basic Books.
  • Peinado, J. M. (2004). Enseñanza-aprendizaje en estrategias metacognitivas en niños de educación infantil. Universidad de Burgos.
  • Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey & D.E. Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp.163-181). New York: Routledge.
  • Sanders, M (2009). STEM, STEM Education, STEMmania. The Technology Teacher, 68(4), 20-26.
  • Strawhacker, A., & Bers, M. U. (2018). Promoting Positive Technological Development in a Kindergarten Makerspace: A Qualitative Case Study. European Journal of STEM Education, 3(3), 09. doi: https://doi.org/10.20897/ejsteme/3869
  • Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules: exploring the impact of teaching styles on young children’s programming knowledge in ScratchJr. International Journal of Technology and Design Education, 28(2), 347–376. doi:https://doi.org/10.1007/s10798-017-9400-9
  • Strawhacker, A., Sullivan, A., & Bers, M. U. (2013). TUI, GUI, HUI: Is a bimodal interface truly worth the sum of its parts? Proceedings of the 12th International Conference on Interaction Design and Children, (pp. 309–312). doi:https://doi.org/10.1145/2485760.2485825
  • Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3–20. doi:https://doi.org/10.1007/s10798-015-9304-5
  • Sullivan, A., Bers, M. U., & Mihm, C. (2017). Imagining, Playing, and Coding with KIBO: Using Robotics to Foster Computational Thinking in Young Children. Conference Proceedings of International Conference on Computational Thinking Education 2017, pp.110–115.
  • Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The Wheels on the Bot go Round and Round: Robotics Curriculum in Pre-Kindergarten. Journal of Information Technology Education: Innovations in Practice, 12, 203-219.
  • Thornton, R., Powell, Z., Marinus, E., Crain, S., & McArthur, G. (2018). Unravelling the Cognition of Coding in 3-to-6-year Olds: The development of an assessment tool and the relation between coding ability and cognitive compiling of syntax in natural language. In Proceedings of ACM International Computing Education Research (ICER) conference, Espoo, Finland, August 2018. New York, NY, USA: ACM. doi:https://doi.org/10.1145/3230977.3230984
  • Villena-Taranilla, R., Cózar-Gutiérrez, R., Miguel Merino-Armero, J., & Antonio González-Calero, J. (2018). Computational Thinking Initiation. An experience with robots in Primary Education. Journal of Research in Science Mathematics and Technology Education, 1(2), 181–206 doi:https://doi.org/10.31756/jrsmte.124
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. doi:https://doi.org/10.1145/1118178.1118215
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. doi:https://doi.org/10.1098/rsta.2008.0118
  • Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. RED, 46, 1-47. doi:https://doi.org/10.13140/RG.2.1.3395.8883
  • Zapata-Ros, M. (2019). Computational Thinking Unplugged. Education in the Knowledge Society, 20, 18. doi:https://doi.org/10.14201/eks2019_20_a18