Implicaciones técnicas y prácticas de las Redes Adversarias Generativas a la Ciencia Abierta en Educación
- Bethencourt-Aguilar, Anabel 1
- Castellanos-Nieves, Dagoberto 1
- Sosa-Alonso, Juan José 1
- Area-Moreira, Manuel 1
-
1
Universidad de La Laguna
info
ISSN: 2529-9638
Año de publicación: 2022
Título del ejemplar: Metodologías aplicadas a la Tecnología Educativa
Número: 13
Páginas: 138-156
Tipo: Artículo
Otras publicaciones en: Revista Interuniversitaria de Investigación en Tecnología Educativa
Resumen
Las Redes Adversarias Generativas (GAN), propias de la Inteligencia Artificial, permiten la creación de datos sintéticos anonimizados útiles para hacer Ciencia Abierta dentro de la investigación educativa. El presente estudio realiza una experimentación en la creación de datos artificiales a partir de un conjunto de datos obtenidos de una encuesta sobre niveles de uso de herramientas digitales y la frecuencia de actividades personales con tecnología. Los datos originales pertenecen a una muestra de alumnado de las titulaciones de postgrado de la Universidad de La Laguna. Los resultados muestran un grado de similitud adecuado entre el conjunto de datos original y el conjunto creado artificialmente a través de algoritmos predictivos. La obtención de conjuntos de datos sintéticos equivalentes a los originales en estructura, forma y extensión permite la liberación de los datos a la comunidad académica salvaguardando la protección de la información confidencial y contrastando una técnica que permite impulsar la Ciencia Abierta desde la obtención y tratamiento de los datos. Las Redes Adversarias Generativas pueden ser utilizadas en la investigación educativa con fines hacia la transparencia en los procedimientos metodológicos y técnicos y a la difusión de conjuntos de datos para fines académicos, investigativos y educativos.
Referencias bibliográficas
- Abadal, E., & Anglada, L. (2020). Ciencia abierta: cómo han evolucionado la denominación y el concepto. Anales de Documentación, 23(1). https://doi.org/10.6018/analesdoc.378171
- Alés, N. S. (2020). La Ciencia y Educación Abierta como movimientos articuladores de la investigación, la tecnología y la innovación: Experiencias del proyecto de Acceso Abierto de la Facultad de Comunicación de la Universidad de La Habana. Revista Publicando, 7(27), 65-72.
- Alhadad, S. S. J., Searston, R. A., & Lodge, J. M. (2018). Interdisciplinary open science: What are the implications for educational technology research?. In M. Campbell, J. Willems, C. Adachi, D. Blake, I. Doherty, S. Krishnan, S. Macfarlane, L. Ngo, M. O’Donnell, S. Palmer, L. Riddell, I. Story, H. Suri & J. Tai (Eds.), Open Oceans: Learning without borders. Proceedings ASCILITE 2018 Geelong, (pp. 303-308).
- Al-Qizwini, M., Barjasteh, I., Al-Qassab, H., & Radha, H. (2017). Deep learning algorithm for autonomous driving using GoogLeNet. 2017 IEEE Intelligent Vehicles Symposium (IV), 89-96. https://doi.org/10.1109/IVS.2017.7995703
- Barua, S., Islam, M. M., Yao, X., & Murase, K. (2014). MWMOTE--Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning. IEEE Transactions on Knowledge and Data Engineering, 26(2), 405-425. https://doi.org/10.1109/TKDE.2012.232
- Bethencourt Aguilar, A., Castellanos Nieves, D., Sosa Alonso, J. J., & Area Moreira, M. (2022). Synthetic student dataset on levels of use of digital tools and frequency of personal activities with ICTs, Mendeley Data, v1, http://dx.doi.org/10.17632/rwz59sxtpn.1
- Bethencourt-Aguilar, A., Area-Moreira, M., Sosa-Alonso, J. J., & Castellano-Nieves, D. (2021). The digital transformation of postgraduate degrees. A study on academic analytics at the University of La Laguna. 2021 XI International Conference on Virtual Campus (JICV), 1-4. https://doi.org/10.1109/JICV53222.2021.9600311
- Bethencourt-Aguilar, A., Sosa-Alonso, J. J., Castellanos-Nieves, D. C., & Area-Moreira, M. (2021). Uso del campus virtual y el rendimiento académico del alumnado: Análisis antes, durante y después del impacto de la Covid-19 en la educación superior. InnoEduca Tic 2021: Libro de Actas de las VIII Jornadas Iberoamericanas de Innovación Educativa en el ámbito de las TIC y las TAC Las Palmas de Gran Canaria, 18 y 19 de noviembre de 2021, 2021, ISBN 978-84-09-35708-6, págs. 293-297. https://dialnet.unirioja.es/servlet/articulo?codigo=8227886
- Bishop, C. M. (1995). Training with Noise is Equivalent to Tikhonov Regularization. Neural Computation, 7(1), 108-116. https://doi.org/10.1162/neco.1995.7.1.108
- Burgos, D. (2020). Radical Solutions and Open Science: An Open Approach to Boost Higher Education. Springer Nature. https://doi.org/10.1007/978-981-15-4276-3
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953
- Conole, G., & Brown, M. (2018). Reflecting on the Impact of the Open Education Movement. Journal of Learning for Development, 5(3). https://doi.org/10.56059/jl4d.v5i3.314
- Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine, 35(1), 53-65. https://doi.org/10.1109/MSP.2017.2765202
- Douzas, G., & Bacao, F. (2017). Self-Organizing Map Oversampling (SOMO) for imbalanced data set learning. Expert Systems with Applications: An International Journal, 82(C), 40-52. https://doi.org/10.1016/j.eswa.2017.03.073
- Douzas, G., & Bacao, F. (2018). Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Systems with Applications, 91, 464-471. https://doi.org/10.1016/j.eswa.2017.09.030
- DeRouin, E. & Brown, J. (1991). Neural Network Training on Unequally Represented Classes. Intelligent Engineering Systems through Artificial Neural Networks, 135-140.
- Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448-455. https://doi.org/10.1016/j.ins.2017.12.030
- Fressoli, J. M., & Arza, V. (2018). Los desafíos que enfrentan las prácticas de ciencia abierta. Teknokultura. Revista de Cultura Digital y Movimientos Sociales, 15(2). https://doi.org/10.5209/TEKN.60616
- González-Pérez, L. I., Ramírez-Montoya, M. S., & García-Peñalvo, F. J. (2022). Technological Enablers 4.0 to Drive Open Science and Education: Input to UNESCO Recommendations. RIED-Revista Iberoamericana de Educación a Distancia, 25(2), 23-48. https://doi.org/10.5944/ried.25.2.33088
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27. https://papers.nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
- Gou, C., Wu, Y., Wang, K., Wang, F.-Y., & Ji, Q. (2016). Learning-by-synthesis for accurate eye detection. 2016 23rd International Conference on Pattern Recognition (ICPR), 3362-3367. https://doi.org/10.1109/ICPR.2016.7900153
- Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. En D.-S. Huang, X.-P. Zhang, & G.-B. Huang (Eds.), Advances in Intelligent Computing (pp. 878-887). Springer. https://doi.org/10.1007/11538059_91
- He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1322-1328 https://doi.org/10.1109/ijcnn.2008.4633969
- Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science (New York, N.Y.), 313(5786), 504-507. https://doi.org/10.1126/science.1127647
- Jones, N. (2015). Artificial-intelligence institute launches free science search engine. Nature. https://doi.org/10.1038/nature.2015.18703
- Li, D.-C., & Fang, Y.-H. (2009). A non-linearly virtual sample generation technique using group discovery and parametric equations of hypersphere. Expert Systems with Applications, 36(1), 844-851. https://doi.org/10.1016/j.eswa.2007.10.029
- Li, D.-C., & Lin, Y.-S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434. https://doi.org/10.1016/j.ejor.2005.05.005
- Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., & Jurafsky, D. (2017). Adversarial Learning for Neural Dialogue Generation https://doi.org/10.48550/arXiv.1701.06547
- Logan, J. A. R., Hart, S. A., & Schatschneider, C. (2021). Data Sharing in Education Science. AERA Open, 7, Cornell University. https://doi.org/10.1177/23328584211006475
- Mohamed, A., Dahl, G. E., & Hinton, G. (2012). Acoustic Modeling Using Deep Belief Networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1), 14-22. https://doi.org/10.1109/TASL.2011.2109382
- Parti, K., & Szigeti, A. (2021). The Future of Interdisciplinary Research in the Digital Era: Obstacles and Perspectives of Collaboration in Social and Data Sciences - An Empirical Study. Cogent Social Sciences, 7(1). https://doi.org/10.1080/23311886.2021.1970880
- Pascual, S., Bonafonte, A., & Serrà, J. (2017). SEGAN: Speech Enhancement Generative Adversarial Network, Cornell University. https://doi.org/10.48550/arXiv.1703.09452
- Peset, F., & Millán González, L. (2017). Ciencia abierta y gestión de datos de investigación: RDM. Ediciones Trea.
- Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, Computer Science, abs/1511.06434.
- Ramírez-Montoya, M. S., McGreal, R., & Agbu, J.-F. O. (2022). Complex Digital Horizons in the Future of Education 4.0: Insights from UNESCO Recommendations. RIED-Revista Iberoamericana de Educacion a Distancia, 25(2), 09-21. https://doi.org/10.5944/ried.25.2.33843
- UNESCO (2021) Recomendación de la UNESCO sobre la Ciencia Abierta—UNESCO Biblioteca Digital. Recuperado 2 de noviembre de 2022, de https://unesdoc.unesco.org/ark:/48223/pf0000379949_spa
- Santana, E., & Hotz, G. (2016a). Learning a Driving Simulator. En ArXiv e-prints. https://ui.adsabs.harvard.edu/abs/2016arXiv160801230S
- Strcic, J., Civljak, A., Glozinic, T., Pacheco, R. L., Brkovic, T., & Puljak, L. (2022). Open data and data sharing in articles about COVID-19 published in preprint servers medRxiv and bioRxiv. Scientometrics, 127(5), 2791-2802. https://doi.org/10.1007/s11192-022-04346-1
- Theodoridis, S., & Koutroumbas, K. (2006). Pattern Recognition, Third Edition. Academic Press, Inc.
- Van der Zee, T., & Reich, J. (2018). Open Education Science. AERA Open, 4(3). https://doi.org/10.1177/2332858418787466
- Van Dijk, W., Schatschneider, C., & Hart, S. A. (2021). Open Science in Education Sciences. Journal of Learning Disabilities, 54(2), 139-152. https://doi.org/10.1177/0022219420945267
- Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F.-Y. (2017). Generative adversarial networks: Introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598. https://doi.org/10.1109/JAS.2017.7510583
- Wang, L., & Sng, D. (2015). Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey, Cornell University. https://doi.org/10.48550/arXiv.1512.03131
- Xie, Z., Jiang, L., Ye, T., & Li, X. (2015). A Synthetic Minority Oversampling Method Based on Local Densities in Low-Dimensional Space for Imbalanced Learning. En M. Renz, C. Shahabi, X. Zhou, & M. A. Cheema (Eds.), Database Systems for Advanced Applications (pp. 3-18). Springer International Publishing. https://doi.org/10.1007/978-3-319-18123-3_1
- Zhou, Z.-H., & Jiang, Y. (2004). NeC4.5: Neural ensemble based C4.5. IEEE Transactions on Knowledge and Data Engineering, 16(6), 770-773. https://doi.org/10.1109/TKDE.2004.11
- Zhuang, Y., Wu, F., Chen, C., & Pan, Y. (2017). Challenges and opportunities: From big data to knowledge in AI 2.0. Frontiers of Information Technology & Electronic Engineering, 18(1), 3-14. https://doi.org/10.1631/FITEE.1601883