Fortaleciendo el pensamiento computacional y habilidades sociales mediante actividades de aprendizaje con robótica educativa en niveles escolares iniciales

  1. Yen-Air Caballero-González 1
  2. Ana García-Valcárcel Muñoz-Repiso 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Pixel-Bit: Revista de medios y educación
  1. Medina Rivilla, Antonio María

ISSN: 1133-8482

Año de publicación: 2020

Número: 58

Páginas: 117-142

Tipo: Artículo

DOI: 10.12795/PIXELBIT.75059 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Pixel-Bit: Revista de medios y educación

Resumen

El progreso tecnológico actual está contribuyendo a promover iniciativas pedagógicas para transformar los procesos de enseñanza-aprendizaje mediante propuestas y modelos educativos que permitan el desarrollo de aprendizajes significativos, competencias digitales y habilidades sociales necesarias para afrontar con éxito los retos que impone el siglo XXI. En este artículo se presentan algunos de los resultados que generó la realización de una experiencia de aprendizaje sobre competencias digitales, asociadas al pensamiento computacional, utilizando retos de programación mediante el kit de robótica educativa Bee-Bot®. Para el estudio se utilizó un diseño cuasiexperimental, con medidas Pretest/Postest y grupo control. En las actividades participaron un total de 40 estudiantes y 2 profesores de educación infantil, pertenecientes a un colegio concertado en Salamanca, España, durante el curso académico 2017-2018. Se emplearon como instrumentos de recolección de datos una rúbrica, una lista de verificación y un cuestionario. Los resultados muestran la existencia de diferencias significativas a favor del grupo experimental, en referencia al dominio y aprendizaje del pensamiento computacional, mediante la construcción de secuencias. Además, se observaron comportamientos sociales positivos entre los estudiantes expuestos a las actividades de aprendizaje y una actitud favorable en relación con el recurso de robótica educativa

Información de financiación

En cuanto al primer autor, el desarrollo de esta investigación fue posible gracias a una beca de la Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) y el Instituto para la Formación y aprovechamiento de los Recursos Humanos (IFARHU) de la República de Panamá. Programa de becas IFARHU- SENACYT para la realización de Doctorado en Investigación.

Referencias bibliográficas

  • Adell, J. S., Llopis, M. A. N., Esteve, M. F. M. & Valdeolivas, N. M. G. (2019). El debate sobre el pensamiento computacional en educación. RIED. Revista Iberoamericana de Educación a Distancia, 22(1), pp. 171-186. http://dx.doi.org/10.5944/ried.22.1.22303
  • Alimisis, D. (2013). Educational Robotics: new challenges and trends. Themes in Science and Technology Education, 6(1), 63-71.
  • Bell, T. & Vahrenhold, J. (2018). CS Unplugged—How Is It Used, and Does It Work? In H. J. Böckenhauer, D. Komm and U. W. (Eds.), Adventures Between Lower Bounds and Higher Altitudes. Cham: Springer. https://doi.org/10.1007/978-3-319-98355-4_29
  • Berrocoso, J., Sánchez, M., & Arroyo, M. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1-18. https://doi.org/10.6018/red/46/3
  • Bers, M. U. (2010). The TangibleK Robotics program: Applied computational thinking for young
  • children. Early Childhood Research & Practice, 12(2). Recuperado de: https://files.eric.ed.gov/fulltext/EJ910910.pdf
  • Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen to playground. Oxford University Press.
  • Bers, M. U. (2017). The Seymour test: Powerful ideas in early childhood education. International Journal of Child - Computer Interaction, 14, pp. 10–14. https://doi.org/10.1016/j.ijcci.2017.06.004
  • Bers, M. U. (2018). Coding and Computational Thinking in Early Childhood: The Impact of Scratch Jr in Europe. European Journal of STEM Education, 3(3), 08. https://doi.org/10.20897/ejsteme/3868
  • Bers, M. U., Flannery, L., Kazakoff, E. R. & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020
  • Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA) (pp. 1-25), Vancouver, Canada.
  • Campbell, D. & Stanley, J. (1993). Diseños experimentales y cuasiexperimentales en la investigación social. Buenos Aires: Amorrortu.
  • Chalmers, C. (2018). International Journal of Child-Computer Interaction Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93–100. https://doi.org/10.1016/j.ijcci.2018.06.005
  • Cheng, Y. W., Sun, P. C. & Chen, N. S. (2018). The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors. Computers & education, 126, 399-416. https://doi.org/10.1016/j.compedu.2018.07.020
  • Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., ... & Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in Human Behavior, 71, 16-23. https://doi.org/10.1016/j.chb.2017.01.018.
  • Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 33(3), 169-186.
  • https://doi.org/10.1080/07380569.2016.1216251
  • García-Peñalvo, F.J., Rees, A.M., Hughes, J., Jormanainen, I., Toivonen, T. & Vermeersch, J. (2016). A survey of resources for introducing coding into schools. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16) (pp.19-26). Salamanca, Spain, November 2-4, 2016. New York: ACM. https://doi.org/10.1145/3012430.3012491
  • García-Peñalvo, F. J. & Mendes, A. J. (2018). Exploring the computational thinking effects in preuniversity education. Computers in Human Behavior, 80, pp. 407–411. https://doi.org/10.1016/j.chb.2017.12.005.
  • Goodgame, C. (2018). Beebots and Tiny Tots. In E. Langran, & J. Borup (Eds.). Society for Information Technology & Teacher Education International Conference (pp. 1179-1183). Association for the Advancement of Computing in Education (AACE).
  • González-González, C. S. (2019). State of the art in the teaching of computational thinking and pro-gramming in childhood education. Education in the Knowledge Society, 20, 17.
  • https://doi.org/10.14201/eks2019_20_a17
  • González Martínez, J., Estebanell Minguell, M. & Peracaula Bosch, M. (2018). ¿Robots o progra-mación? El concepto de Pensamiento Computacional y los futuros maestros. Education in the Knowledge Society (EKS), 19(2), 29-45. https://doi.org/10.14201/eks20181922945
  • González, Y. A. C., & Muñoz-Repiso, A. G. V.(2018, October). A robotics-basedapproach to foster programming skills andcomputational thinking: Pilot experiencein the classroom of early childhoodeducation. In Proceedings of the SixthInternational Conference on TechnologicalEcosystems for Enhancing Multiculturality (pp.41-45). ACM. https://doi.org/10.1145/3284179.3284188.
  • Grover, S. & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. Educational Researcher, 42(1), 38–43. http://doi.org/10.3102/0013189X12463051
  • Hernández Sampieri, R., Fernández-Collado. C., & Baptista-Lucio. P. (2014). Metodología de la investigación. México: McGraw-Hill Education.
  • Horn, M. & Bers, M. (2019). Tangible Computing. In The Cambridge Handbook of Computing Education Research (S.A. Fincher and A.V. Robins, Eds.). Cambridge University Press.
  • Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in Human Behavior, 52, 200-210. https://doi.org/10.1016/j.chb.2015.05.047
  • Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13-24. https://doi.org/cxnt
  • Leidl, K. D., Bers, M. U. & Mihm, C. (2017). Programming with ScratchJr: a review of the first year of user analytics. In S. C. Kong, J. Sheldon and K. Y. Li (Eds.), Conference Proceedings of International Conference on Computational Thinking Education 2017 (pp. 116–121). Hong Kong: The Education University of Hong Kong.
  • Merrill, M. D. (2002). First principles of instruction. Educational technology research and development, 50(3), 43-59. https://doi.org/10.1007/BF02505024
  • Merrill, M. D. (2009). First principles of instruction. In C. M. Reigeluth and A. A. Carr-Chellman (Eds.), Instructional-design theories and models: Building a common knowledge base (Vol. III, pp. 41-56). New York: Routledge
  • Moreno, I., Muñoz, L., Serracín, J. R., Quintero, J., Pittí Patiño, K. & Quiel, J. (2012). La robótica educativa, una herramienta para la enseñanza-aprendizaje de las ciencias y las tecnologías. Teoría de la Educación. Educación y Cultura en la Sociedad de la Información, 13(2). Recuperado de:
  • https://cutt.ly/swmXnwr.
  • Muñoz-Repiso, A. G. V., & González, Y. A. C.(2019). Robótica para desarrollar el pensamiento computacional en Educación Infantil. Comunicar: Revista científica iberoamericana de comunicación y educación, (59), 63-72. https://doi.org/10.3916/C59-2019-06
  • Papadakis, S., Kalogiannakis, M. & Zaranis, N. (2016). Developing fundamental programming concepts and computational thinking with ScratchJr in preschool education: a case study. International Journal of Mobile Learning and Organization, 10(3), 187. https://doi.org/10.1504/ijmlo.2016.077867
  • Ramírez, P. A. L. & Sosa, H. A. (2013). Aprendizaje de y con robótica, algunas experiencias. Revista Educación, 37(1), 43-63.
  • Reigeluth, C. M. (2016). Teoría instruccional y tecnología para el nuevo paradigma de la educación. RED. Revista de Educación a Distancia, 50. https://doi.org/10.6018/red/50/1a
  • Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. Design, Make, Play: Growing the Next Generation of STEM Innovators, 163–181. https://doi.org/10.4324/9780203108352
  • Rico Lugo, M. J. & Bosagain Olabe X. (2018). Pensamiento computacional: rompiendo brechas digitales y educativas. EDMETIC, Revista de Educación Mediática y TIC, 7(1), pp. 26-42.
  • https://doi.org/10.21071/edmetic.v7i1.10039
  • Sánchez, F. Á. B. & Guzmán, A. F. (2012). La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales. Education in the Knowledge Society, 13(2), 120-136. Recuperado de: https://cutt.ly/owmHZ50
  • Santoya–Mendoza, A., Díaz–Mercado, A., Fontalvo–Caballero, F., Daza–Torres, L., Avendaño–Bermúdez, L., Sánchez–Noriega, L., Ramos–Bernal, P., Barrios–Martínez, E., López–Daza, M., Osorio–Cervantes, G., Rodríguez–Pertuz, M. & Moreno–Polo, V. (2018). Robótica educativa desde la investigación como estrategia pedagógica apoyada en tic en la escuela. Cultura. Educación y Sociedad 9(3), 699-708. http://dx.doi.org/10.17981/cultedusoc.9.3.2018.82
  • Strawhacker, A. & Bers, M. U. (2018). Promoting Positive Technological Development in a Kindergarten Makerspace: A Qualitative Case Study. European Journal of STEM Education, 3(3), 09.
  • https://doi.org/10.20897/ejsteme/3869
  • Sullivan, A. & Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3–20. https://doi.org/10.1007/s10798-015-9304-5
  • Sullivan, A. A., Bers, M. U. & Mihm, C. (2017). Imagining, playing, and coding with KIBO: using robotics to foster computational thinking in young children. Siu-cheung KONG The Education University of Hong Kong, Hong Kong, 110.
  • Sullivan, A., Strawhacker, A. & Bers, M. U. (2017). Dancing, Drawing, and Dramatic Robots: Integrating Robotics and the Arts to Teach Foundational STEAM Concepts to Young Children. In M. S. Khine (Ed.), Robotics in STEM Education: Redesigning the Learning Experience (pp. 231–260). Springer International Publishing. http://doi.org/10.1007/978-3-319-57786-9_10
  • Sullivan, A. & Bers, M. U. (2018). Dancing robots: integrating art, music, and robotics in Singa-pore’s early childhood centers. International Journal of Technology and Design Education, 28(2), 325-346. http://doi.org/10.1007/s10798-017-9397-0
  • Szurmak, J. & Mindy, T. (2013). Tell me a story: The use of narrative as a tool for instruction. In Imagine, Innovate, Inspire: The Proceedings of the ACRL 2013 Conference (pp. 546-552). Indianapolis, IN, USA: ACRL.
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
  • https://bit.ly/2ASUK9Q
  • Wing, J. M. (2008). Computational thinking and thinking about computing. IPDPS Miami 2008 -Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM, (July), 3717-3725. https://doi.org/10.1109/IPDPS.2008.4536091
  • Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. Red, 46, 1-47. https://doi.org/10.6018/red/45/4
  • Zapata-Ros, M. (2019). Computational Thinking Unplugged [Pensamiento computacional desenchufado]. Education in the Knowledge Society, 20, 1-29.
  • https://doi.org/10.14201/eks2019_20_a18